

Introduction

DB project – carries a different set of risks from conventional work.

- Consideration for boundary conditions
 - Brownfield construction.
 - TCH and Stoney Trail traffic.
 - Active community associations in Valley Ridge, Crestmont, Cougar Ridge, and WinSport. Community engagement continues into construction due to uncertainty of preferred proponent (and design) during pursuit.
 - Four-year construction window.
 - Paskapoo Slopes large excavation with variable subsurface conditions.
 - Concurrent construction projects at north and south project limits.

- DB risks on this project
 - Incomplete geotechnical information and ability to access for investigation
 - Variable subsurface conditions
 - Quantity risk
 - Schedule
 - Scope creep
 - Relief events
 - Weather risk
 - Unforeseen scope, leading to cost increases
 - Escalation
 - Utility relocates by external parties.

How to manage these risks?

Project Overview

Managing Geotechnical Risks

- Geotechnical engineering is fundamentally about managing risk
- Managing the geotechnical risk is not simple on conventional projects
- On Design-Build (DB) projects, managing geotechnical risk is even more difficult because the contract is awarded before a complete geotechnical investigation.
- Stages:
 - Managing pre-award geotechnical uncertainty
 - Managing post-award geotechnical risk.

Managing Pre-Award Geotechnical Uncertainty

- Uncertainty is lack of information.
- Uncertainty can be reduced by performing geotechnical investigation and testing
 - Owner provides geotechnical reports
 - Contractor performs supplementary geotechnical investigation
- Limited time and budget during pursuit stage (30% design).
 - Limited geotechnical investigation
 - Geotechnical risk allocation.

Managing Pre-Award Geotechnical Uncertainty – Surficial Geology

Managing Pre-Award Geotechnical Uncertainty – Surficial Geology

Managing Pre-Award Geotechnical Uncertainty – Pursuit Stage Geotechnical

- 18 testholes drilled by EllisDon
- 3 testholes drilled by Alberta Transportation in Paskapoo escarpment
- 9 testpits by EllisDon in Paskapoo escarpment for bedrock surface
- Historical testholes at the existing bridge locations
- Total number of testholes available for pursuit stage design 15% of the expected number of testholes for detailed design
- Spoke to contractors involved in construction of storm system at the existing interchange.

Managing Pre-Award Geotechnical Uncertainty – Pursuit Stage Findings

- Subsurface conditions variable within short distances and with depth
- High groundwater
- Potential presence of underground springs and buried channels
- Running and flowing ground conditions in the upper 5m
- Buried debris north of TCH concrete, metals, etc.
- Highly variable bedrock surface in Paskapoo escarpment
- Soft ground conditions
- Settlement
- Slope stability
- Impacts on adjacent infrastructure residential area, underground utilities, transportation infrastructure.

Managing Pre-Award Geotechnical Uncertainty – Risk Mitigation

- Selected driven steel piles for all bridges existing bridges are on straight shaft and belled cast-in-place concrete piles
- Heavy steel pile sections and piling shoes if debris (concrete, metals, etc.)
 encountered at pile locations
- Vibration and settlement monitoring to identify and mitigate impacts of pile driving on nearby residential neighbourhood
- Subcut and basal reinforcement at approach fill and MSE wall locations to mitigate settlement and stability
- Reinforced slopes to mitigate restricted right of way
- Uniaxial geogrids to achieve factor of safety against slope stability.

Managing Post-Award Geotechnical Risk Mitigation

- Detailed geotechnical investigation in accordance with AT guidelines
 - About 200 testholes along roads and at each structure location
 - Geophysical survey to delineate bedrock surface
 - Extensive laboratory testing on soil and bedrock samples
- Detailed settlement, seepage and slope stability analyses
- Observational approach to mitigate risks during construction.

Managing Post-Award Geotechnical Risk Mitigation – Driven Steel Piles

- 800 driven steel piles
- Provided embedment during pursuit stage
- Pile embedment increased during detailed design
- Increased pile lengths and number of splices cost and schedule risk
- Managed risk by terminating piles shorter than design depth, performing EOID and Restrike PDA testing, and using pile set up
- The pile set up varied from 6% to 80%
- Performed detailed WEAP analysis after PDA testing to confirm each pile achieved the required capacity.

Managing Post-Award Geotechnical Risk Mitigation Reinforced Slopes

- Restricted Right-of-Way at five locations requiring retaining walls
- Reinforced slope options was considered in place of retaining walls to reduce cost and use available material
- Slope heights 4m to 14m
- Slope inclination 1.3H:1V to 2.9 H:1V
- High strength uniaxial geogrids as primary reinforcement, secondary geogrids, low maintenance seed mix, with or without wrap around.

Roadway / Geometric Design

How did the geotechnical risks impact the roadway design and bridge geometry?

- Paskapoo Excavation
- Stoney Trail Profile
- TransCanada / Valley Ridge Blvd.

Paskapoo Excavation

- Risk
 - Bedrock excavation (quantity and rock strength), confirmed location unknown.
 - Groundwater springs.
- Design mitigate risk through lifting profile.
- Construction sideslope changes.
 - A bench required at transition from 3:1 to 2:1 slope.
 Excavation starts at top of slope and works down making location of bedrock critical.
 - Detailed investigation using probe holes.

Stoney Trail Profile

- Lifted profile (~2.0m)
 - Improve earthworks balance
 - Avoid bedrock
 - Max grade on structures
- Enabled by:
 - Shift 1 Ave crossing North
 - Combined bridges over 1 Ave and the EB-NB ramp into two-span bridges.

1175

1165

1160

TransCanada / Valley Ridge Blvd

- Lifted profile at Valley Ridge Blvd (up to 6.0m)
 - Improve earthworks balance
 - Enabled lifting of Valley Ridge Blvd and 109
 Street by up to 3.5m).
 - Raised "bath tub" in VRB profile

- Roundabouts at Valley Ridge Blvd.
 Reduced bridge span
 - Reduced bridge span
 - Valley Ridge Blvd shifted east
 - Proposed bridges away from existing structure

Bridge Construction TCH over Valley Ridge Blvd.

Bridge Design Challenges

- Foundation selection limited borehole information
- Contractual requirements
 - Structures along ramps and alignments were required to have the same superstructure material and abutment type (open vs closed).
 - Required to use concrete on tight radius curves
- Aggressive design schedule
- Challenging geometry associated with systems interchanges.

Bridge Design Risk Management

- Risks were managed based on the best choice for the individual structure
- Similar but different structures
 - 3 steel, 17 concrete
 - 14 open abutments, 6 closed
 - 7 single span integral abutments, 2 dual span semi-integral, 2 dual span conventional abutment, 7 single span conventional abutment
 - 9 prestressed, 4 single stage PT, 4 two-stage PT superstructures
 - 4 structures on horizontal radius of 300m, max span 58m
- Combined four single span bridges into two 2 span structures
- Foundation selection driven piles
 - Represented the lowest risk option.

Bridge Design Risk Management

- Avoided MSE walls
 - Schedule risk
 - Excavate to backfill again
- Minimize girder lines
 - Reduced deck formwork time > material cost of thicker deck
- Maximized PT when practical
 - Extended span length
 - Reduced girder lines
 - Avoided on integral abutments

- Keep girders parallel
 - Reduced fabrication complexity for deck formwork, intermediate diaphragms
 - Easier to build tapered bridges
- Reduce skew to eliminate joints
 - Slightly longer bridge without changing girder depth (4 bridges).

Bridge Design Risk Management

- Chording curved decks
 - Simplified deck formwork and barriers on large radii
- Keep the design team compact
 - Develop consistency through this avenue
- Revised deck joint installation procedure
 - Re-aligned deck steel parallel to the joint anchor studs to reduce conflicts
 - Preloaded the deck instead of paving in advance of joint installation
 - Permitted construction joints to be moved away from water capture areas
 - Provided flexibility of loading conditions if formwork had not been removed
 - Better control of blockout elevations
 - Trade-off of longer construction schedule for reduced installation risks
- Generally successful in meeting the tighter AT tolerances.

Lock blocks were used to create a UDL to mimic ACP and barrier deflection

Bridge Design Lessons Learned

- Bridge elevation view vs. curved underpassing roads
 - Bridge geometry is typically established along control line
 - Curved underpassing roads add complexity
 - Needs to be captured during pursuit.

Bridge Design Lessons Learned

- Longitudinal grade and skew effects at expansion gap
 - Girder is typically shown plumb, and drawn along centerline of girder
 - Grade and skew take up expansion gap space.

Bridge Design Lessons Learned

- Longitudinal restraint of girders during construction
 - 2 span bridges have sliding bearing at abutment
 - Girder is held in place by neoprene pad glued to plinth, sitting on 3% grade.

